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Abstract : Engineering industries have made wide application of gyroscopic devices that manifest the property of the 
maintenance within a particular space the axis of a spinning rotor. The main component of the gyroscopic devices is 
the spinning rotor, which design can be different and represented by the disc, cylinder, sphere, ellipsoid, toroid, and 
etc. forms. The known publications represent the property of numerous gyroscopic devices by a mathematical model 
formulated on principle of the change in the angular momentum. Nevertheless, practical tests of gyroscopic devices do 
not correspond to this analytical approach. A simple spinning rotor created problems that did not have solutions for the 
long term. Recent investigations in this area have demonstrated that the origin of gyroscope properties is more 
complex than represented in numerous publications. Researchers did not pay attention to the action of inertial forcers 
generated by the mass elements of the spinning rotor. The applied torque on gyroscopic devices generates internal 
resistance and precession torques based on the action of the centrifugal, common inertial, and Coriolis forces, as well 
as the change in the angular momentum. These internal inertial torques act simultaneously and interdependently 
around two axes of gyroscopic devices, and represent the fundamental principles of the gyroscope theory. This paper 
presents mathematical models for the internal inertial torques generated by the mass elements and center mass of the 
spinning sphere. These models make it possible to describe all gyroscope properties for different design of the 
spinning rotor and represent novelty for machine dynamics and engineering.  
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——————————      —————————— 
 

1. Introduction 

       Starting from the time of industrial revolution, scientists paid attention on the remarkable 

gyroscope properties. In 1765, L. Euler first laid out the mathematical foundations for gyroscope 

theory in his work on the dynamics of rigid bodies. I. Newton, J-L. Lagrange, L. Poinsot,  J.L.R. 

D’Alembert, P-S. Laplace, L. Foucault, and other brilliant scientists added new interpretations of 

gyroscopic effects, which are displayed in the rotor’s persistence for maintaining its plane of 

rotation. The applied theory of gyroscopes emerged mainly in the twentieth century [1- 4]. 

Numerous publications have been dedicated to the gyroscopic effects and their applications in 

engineering [5. 6]. Gyroscopic effects and properties are relayed in many engineering 

calculations for rotating parts that enable the function of numerous gyroscopic devices in 

engineering industries [7]. All fundamental textbooks of classical mechanics have chapters that 

represent gyroscope theory [8, 9]. There are many publications regarding gyroscope theory as 

well as many approaches and mathematical solutions that describe their properties [10, 11]. All 

publications contain numerous assumptions, simplifications, as well as explain the gyroscope 

IJSER

http://www.ijser.org/
mailto:%20ryspek@unimap.edu.my


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                      469 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

effects in terms of the conservation of kinetic energy and by the action of the change in the 

angular momentum of the spinning rotor [12-14]. Some researchers intuitively pointed to the 

action on the gyroscope of inertial forces, which also includes the manifestation of gyroscope 

effects [15, 16]. However, the action of inertial forces on gyroscopes is not represented by 

mathematical models.  

     Mathematical models for gyroscope properties in known publications often do not match 

practical applications for gyroscope devices [17, 18]. From this, researchers have spawned 

artificial terms such as gyroscope resistance, gyroscope couple, gyroscope effects and some 

other fantastical properties [19, 20]. This is the reason that gyroscope theory still attracts many 

researchers seeking to find true gyroscope theory [21, 22]. However, the origin of gyroscope 

effects is more complex than those represented in the known theories. Recent investigations of 

the physical principles of gyroscope motions demonstrate four inertial forces acting upon a 

spinning rotor generate all gyroscopic effects. New analytical approach based on action of 

inertial forcers are generated by the centre mass and distributed mass element of the spinning 

rotor, which design and form plays significant role. Research has shown that internal torques 

produced by mass elements and center mass of spinning rotors manifest centrifugal, common 

inertial, Coriolis forces, and the change in the angular momentum. These torques interrelated and 

occur simultaneously, and represent the fundamental principles of gyroscope theory. Centrifugal 

and Coriolis forces generate resistance torque and common inertial forces and the change in the 

angular momentum of a spinning rotor generate the precession torque [23 - 25]. New 

mathematical models for acting internal torques gives significant impact to gyroscope theory and 

enable to describe all properties for gyroscopic devices that were unsolved. Such a new 

analytical approach to the gyroscope theory is formulated in terms of physical principles and 

understandable to users. This work demonstrates application of new mathematical models for the 

internal inertial torques generated by the mass elements and centre mass of the spinning sphere. 
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2. Analysis of centrifugal forces acting on a spinning sphere 

The primary component of the gyroscopic device is the spinning rotor mounted on the axle. The 

inertial forces of the spinning rotor are generated by its centre mass and mass element. The 

designs of the spinning rotor can be different and locations and actions of the centre mass and 

mass element depend on the form of the spinning rotor. This work considers a spinning sphere 

that is rotor, at about its horizontal axis oz with a constant angular velocity of ω in a counter 

clockwise direction when viewed from the tip of axis oz (Fig.1). The rotor’s mass elements m are 

located on the sphere whose radius is (2/3)R of the rotor, creating their rotating planes around 

axes oz, oy and ox. In uniform circular motions around axes separately, the value of the 

tangential velocity of mass elements does not change. However, the velocity is a vector quantity 

so that its direction changes continuously, i.e. the mass elements move with acceleration. This 

acceleration and rotation of mass elements represent the centrifugal forces that form the rotating 

forces’ pseudo plane, which acts strictly perpendicular to the axis oz of the spinning sphere. If an 

external torque is applied to the spinning sphere, the rotating centrifugal forces’ plane is declined 

and resisted opposite to the action of external torque. 

  

Figure 1.  A scheme of the spinning sphere 
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    Let’s consider the spinning mass elements that located on the plane xoy. The turn of the 

spinning sphere’s plane around axis ox that passes along the diameter line leads to change in the 

directions and locations of the centrifugal force vectors fct. The vectors fct, whose 

directions coincide with the line of axis ox (i.e. located on 0o and 180o from the line of axis ox), 

do not change. Other vectors of the centrifugal forces fct are located on the inclined plane and 

have non-identical change in their own directions. The maximal declination of vectors f*ct from 

line of axis oy has vectors that are located at 90o and 270o from the line of axis ox (Fig. 2). These 

variable directions of the centrifugal forces’ vectors generate change in the vector’s components 

fct.z , whose directions are parallel to the spinning rotor axle oz. The integrated product of 

components’ for the vector’s change in centrifugal forces fct.z and their variable radius of location 

relative to axis ox generate the resistance torque Tct acting opposite to the external torque. 

Centrifugal forces originally counteract the action of the external torque directed to change the 

location of the centrifugal forces' plane. 
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Figure 2.  A scheme acting forces, torques and motions of the spinning mass elements of the 

sphere that located on the plane xoy.  

 

Similar resistance torques are generated by the mass elements located on the planes that parallel 

to the plane xoy (Fig. 1). The radius of location for other mass elements is represented by the 

following expression βsin)3/2( Rr = . The following analytical approach describes the resistance 

torque generated by the centrifugal forces of the spinning sphere as a reaction to the external 

torque being applied to the rotor. At this stage of mathematical development, it is possible to 

neglect the weight of the rotor axle and accept the bearing friction as negligible. As a starting 

condition, the rotating mass elements m, at a single instance of time, are located symmetrically in 

both positive and negative directions to the rotor’s axis oz, and do not change directions instantly 

in space. The spinning sphere is in balance due to the rotating centrifugal forces. The action of the 

external torque leads to the turning of the rotating mass elements’ plane xoy and others that 

parallel to one onto the small angle Δγ around axis ox and to changing its location represented by 

the plane y*ox. The action of the external torque T produces a contracting moment, which 

manifests as a resistance torque generated by the components of change in the centrifugal forces 

(Fig. 2). The resistance torque produced by the centrifugal force of the mass element is expressed 

by the following equation: 

 mzctct yfT .=∆                                                                                                                        (1) 

where ΔTct is the torque generated by the centrifugal force of the spinning sphere’s mass 

element; fct.z is the axial component of the centrifugal force; and ym is the distance of location in 

the mass element along axis oy. 

 

The following expression represents the equation for the axial component of the mass 

element’s centrifugal force (Fig. 2):   
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Mm , M is the mass of the rotor;  4π is the spherical angle of the 

ball; Δδ is the spherical angle of the mass element’s  location;  r = (2/3)Rsinαsinβ is the radius of 

the mass elements location; R is the external radius of the sphere; ω is the constant angular 

velocity of the sphere; α is the angle of the mass element’s location on the plane that parallel to 

plane xoz; β is the angle of the mass element’s location on the plane that parallel to plane xoy; Δγ 

is the angle of turn for the sphere’s plane around axis ox (sinΔγ = Δγ for the small values of the 

angle). 

 

      Substituting the defined parameters into Eq. (1) yields the following equation: 
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where βα cossin)3/2( Rym =  (Figs. 1 and 2) is the distance of the mass element’s location on 

the sphere’s plane relative to axis ox, other components are as specified above. 

      Equation (3) contains variable parameters whose incremental components are independent 

and represented by different symbols.  Additionally, Eq. (3)   allows for defining the integrated 

torque generated by the action of the centrifugal forces’ axial components of the spinning 

sphere’s mass elements, wherein all components should be presented in a form appropriate for 

integration. For integration, trigonometric functions are represented in differential forms. The 
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action of the centrifugal forces’ axial components represents the distributed load applied across 

the length of the circle and angle α, where the sphere’s mass elements are located. Figure 2 

depicts locations of the axial components of centrifugal forces fct.z generated by the mass 

elements m of the spinning sphere. A distributed load can be equated with a concentrated load 

applied at a specific point along axis oy, which is centroid at the semi-circle. The location of the 

resultant force is the centroid (point A, Fig. 2) of the area under the curve, which is calculated by 

the known integrated Eq. (4). The distance of location of point A is defined by the expression ym 

that represented above. Substituting Eq. (2) and other components into Eq. (4) and then 

transformation and simplification yields the following expression: 
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where  the expression γδ
π
ω

∆∆
6

2MR  is accepted at this stage of computing as constant for the Eq. 

(4); the expression 2/)2cos1(sin2 αα −= is a trigonometric identity that replaced in the equation, 

and other parameters are as specified above. 

    Equation (3) and its components are expressed for integration by a differential form where 

∫=
π

αααα
0

2 cossin2sin d  and  ∫=
π

ββββ
0

2 cossin2sin d ; Substituting defined components  into 

Eq. (3), and presenting by the integral form. The solution of integral is considered for the semi-

circle. The upper limit for dδ is represented by the area of hemisphere. Substituting defined 

parameters and expressing by the integral forms, the following equation emerges: 
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Solving integral Eq. (5) yields the following result:  
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The change of the upper limit for the trigonometric expression sinus leads to increasing the result 

twice. Solution of the expression giving rise the following  

    (6)                        

                   

where all parameters are as specified above. 

 

    The rate change in the torque Tct per time is represented by the following differential equation: 
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where ωα /=t  is the time taken relative to the angular velocity of the spinning sphere, and other 

parameters are as expressed above 

Then, the differential of time is: ;
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velocity of the spinning sphere’s precession around axis ox. Substituting the defined components 
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Separating the variables of Eq. (8) and transformation yield the following equation: 
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Equation (9) is represented by the integral form at defined limits and yields the following 

integral 

equation:  
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Solving Eq. (10) yields the following result:  
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     When the centrifugal forces act on the upper and lower sides of the sphere’s plane, then the 

total resistance torque Tct is obtained when the result of Eq. (11) is increased twice:  
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where J = 2MR2/5 is the sphere mass moment of inertia, other parameters are as specified above. 

                                                                                       

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                      477 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

      Analysis of Eq. (12) shows that the resistance torque generated by the centrifugal forces of 

the spinning sphere depends proportionally on its mass moment of inertia and angular velocity, 

as well as the angular velocity of the precession. Absence of an external torque means that the 

angular velocity of the forced precession ωx = 0. Then, Eq. (12) gives the resistance torque’s 

equation of the centrifugal forces Tct = 0, which is a natural result. The action of the resistance 

torque generated by the centrifugal forces of the mass elements is only manifested in the case of 

action by the external load torque T. The direction of the resistance torque’s action and the 

direction of the angular velocity of precession are opposite to each other. It means that the 

resistance torque generated by the centrifugal forces is the restraining torque. 

 

3. Analysis of inertial forces acting on a spinning sphere 
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The uniform circular motion of the spinning sphere experiences the tangential velocity of its 

mass elements. In the case of acting on an external torque that is applied to a spinning sphere, as 

considered in section 1, the plane of the spinning sphere turns around axis ox (Fig. 2). This turn 

leads to a change in the direction of the mass elements’ tangential velocity and produces the 

acceleration and inertial forces of the rotating mass elements. The turn in the plane of the spinning 

sphere around axis ox leads to non-identical change in the directions of the tangential velocity 

vectors. The maximal changes in direction have the velocity vectors V* of the mass element 

located on the line of axis ox (Fig. 3). The two vectors V do not have any changes, whose 

direction is parallel to the line of axis ox, i.e. located on 90o and 270o from the line of axis ox. 

These variable directions in the tangential velocity vectors generate change in the vector’s 

components Vz whose directions are parallel to the spinning rotor’s axle oz. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A scheme of acting forces, torques and motions of the spinning sphere 

   

The change in the velocity vectors refers to the accelerated motions of the spinning sphere’s 

mass elements that generate their inertial forces. The integrated product of components for the 
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vector change in inertial forces fin of the mass elements and their variable radius of location 

relative to the turn axis oy generate the inertial torque Tin acting around axis oy. Inertial torque is 

originally the result of the external torque’s action and represents the precession torque that is 

directed to changing the location of the spinning sphere’s plane around axis oy.  

The precession torque generated by the inertial force of the mass element is expressed by the 

following equation: 

 

 mzminin xmaxfT ==∆                                                                                                      (13) 

 

where ΔTin is the torque generated by the inertial force of the spinning sphere’s mass element fin; 

az is the acceleration of the mass element m along axis oz; and xm is the distance to the mass 

element’s location along axis ox. Other components are represented in section 1. 

 

     The expression for the mass element m is represented by the component of Eq. (2) in section 

1. The expression for the distance xm for the mass element’s location along axis ox is represented 

by Eq. (4), but with change to the indices of axes and forces. The equation for the acceleration az 

of the mass element is defined by the first derivative of change in the tangential velocity, whose 

value depends on the angle of its location on the spinning sphere, which is variable with time. 

The expression for az is presented by the following equation: 
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where az = dVz/dt is the acceleration of the mass element along axis oz; Vz = Vcosα(t)sinΔ γ is 

the change in the tangential velocity V of the mass element; Δγ is the angle of the turn of the 

spinning sphere’s plane around axis oy (sinΔγ = Δγ for the small values of the angle); V = 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                      480 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

(2/3)Rωsinαsinβ, where R is the radius of the sphere; ω = dα/dt is the angular velocity of the  

spinning sphere; α is the angular location of the mass element; t is the time. 

  

Substituting the defined parameters and Eq. (2) into Eq. (1) yields the following equation: 
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where all parameters are as specified above.  

 

 

The following solution is the same as for Eq. (3) of section 1, and yields the equation for the 

precession torque whose expression is as follows: 

 

       

                                                                                                                      (16) 

                                                                                    

 Equation (16) represents the precession torque generated by the mass elements of the spinning 

sphere. The external torque, as applied to the spinning sphere and acting around axis ox, 

generates and directs its angular velocity of precession around axis oy into a counter clockwise 

direction. The precession torque generated by the inertial forces and resistance torque generated 

by the centrifugal forces are both originated by one external load torque. These two torques are 

expressed by a single equation albeit acting around different axes. Blocking the rotor’s motion 

around axis oy leads to deactivation of the resistance torque produced by the centrifugal forces 

acting around axis ox and vice versa. Separate action by each torque is impossible and represents 

a new gyroscopic property. The change in the angular momentum represents a precession torque 

generated by the center mass of the spinning sphere and expressed by the well-known equation 
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Tam = Jωωx where all parameters are as specified above. The total precession torque acting 

around axis oy is represented a sum of the precession torques generated by the inertial forces of 

the mass elements and the change in the angular momentum whose equation is as follows: 

 

                                                         (17)                                                                     

where Tp is the total precession torque acting around axis oy. Other components are as specified 

above. 

 

4. Analysis of Coriolis forces acting on a spinning sphere  

In classical mechanics, Coriolis acceleration and force are a product of the linear motion of 

a mass on a rotating disc. The action of the Coriolis acceleration and force is revealed in the 

spinning sphere under the external torque. The resulting action of Coriolis force, generated by the 

mass elements of the spinning sphere, is expressed as the integrated resistance torque acting 

opposite to the action of the external torque. Figure 4 depicts the mass element m that travels in 

circle on the sphere’s plane, which turns on the plane yoz in the precession angle Δγ around axis 

ox. This turn leads to change in the direction of the tangential velocity of mass elements, and 

produces the acceleration and Coriolis forces of the rotating mass elements. The turn of the 

spinning sphere’s plane around axis ox leads to a non-identical change in the directions of the 

tangential velocity vectors. The maximal changes in direction have the velocity vectors V* of the 

mass element located on the line of axis ox (Fig. 4). The two vectors V do not have any changes, 

whose directions are parallel to the line of axis ox, i.e. located on 90o and 270o from the line of 

axis ox. These variable directions of the tangential velocity vectors generate the change in the 

vector’s components Vz whose directions are parallel to the spinning sphere’s axle oz. Changes in 

the value of the velocity are expressed as an acceleration of the mass elements and their inertial 

forces. 

xaminp JTTT ωωπ 



 +=+= 1
27
20 2

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                      482 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

 

 

         Figure 4.  A scheme acting forces, torques and motions of the spinning sphere 

 

The resistance torque generated by the Coriolis force of the mass elements is expressed by the 

following equation: 

 mzmcrcr ymayfT ==∆                                                                                                      (18) 

where ΔTcr is the torque generated by Coriolis force fcr of the spinning sphere’s mass element m; 

az is the acceleration of the mass element along axis oz; and ym = (2/3)Rsinαsinβ is the distance 

to the mass element’s location along axis oy; other components are represented in Eq. (2) of 

section 1. 

 

The expression for mass element m is represented by the component of Eq. (2) in section 1. The 

equation for Coriolis acceleration az of the mass element is defined by the first derivative of 

the change in the tangential velocity, whose value depends on the angle of its location on the 
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plane yoz, which is variable with time [23]. The expression for az is represented by the following 

equation: 
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where az = dVz/dt is the Coriolis acceleration of the mass element along axis oz; Vz = 

VcosαsinΔγ(t) is the change in the tangential velocity V of the mass element; Δγ(t) is the angle of 

turn in the spinning sphere’s plane around axis ox (sinΔγ(t) = Δγ(t) for the small values of the 

angle); V = (2/3)Rωcosαsinβ, where R is the radius of the sphere; α and β is the angular location 

of the mass element (section 2); ωx = Δγ(t)/dt is the angular velocity of precession around axis ox; 

t is the time.  Then Coriolis force is represented by the following expression: 
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=                                                  (20) 

 

Substituting these defined parameters into Eq. (18) and transformation yields the following 

equation: 

 

βαβα
π

δωω sinsin 
3
2sincos

6
2 RMRT x

cr ×
∆

=∆                                                                             (21) 

 

      The Coriolis forces represent the distributed load applied along the length of the circle where 

the sphere’s mass elements are located. Figure 4 depicts the locations of Coriolis forces 

generated by the motion of the spinning sphere’s mass elements m around axes oz and ox. A 

distributed load can be equated with a concentrated load applied at a specific point along the 

semi-circle. The location of the resultant force is the centroid (point C, Fig. 4) of the area under 
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the Coriolis force’s curve calculated by Eq. (4), but with its own symbols. Substituting the 

defined parameters into Eq. (4) and transformation yields the following equation: 
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          (22) 

 

where the expression   
π

δωω
6

∆xMR  is accepted as constant for the Eq. (21), the expression

)2cos1)(2/1(cos2 αα += is a trigonometric identity that replaced in the equation and other 

parameters are as specified above. 

     Equation (21) is expressed by a differential form, when substituting Eq. (22). Then replacing 

∫ 


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
 −=+=

π
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0

2

2
2sin1

2
1)2cos1(

2
1cos d  , ∫=

π

βββ
0

cossin d  and the expression ym by yC in 

forms of the integral expression with change of defined limits, the following equation emerges:        

   

                                        

   (23)                          

 

Solving integral Eq. (23) yields the following result:  
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where the limits of integration for the trigonometric expression of sinus are taken for the quarter 

the circle and result is increased twice.  

 

     When the Coriolis forces act on the upper and lower sides of the sphere’s plane, then the total 

resistance torque Tcr is obtained when the result of Eq. (23) is increased twice: 

             

                  (24) 

 

 

where J = 2MR2/5 is the sphere mass moment of inertia, other parameters are as specified above. 

 

     The analysis of Eq. (24) shows that the resistance torque generated by Coriolis forces of the 

spinning sphere’s mass elements depends proportionally on the mass moment of the sphere’s 

inertia, its angular velocity, and on the angular velocity of the precession. Deactivation of the 

external torque means that the angular velocity of the precession is ωx = 0, and hence the 

resistance torque generated by the Coriolis forces is also deactivated. The directions of the 

resistance torque and angular velocity of precession are opposite to each other. It means that the 

resistance torque generated by the Coriolis forces is the restraining torque. The total resistance 

torque acting around axis ox is represented a sum of the resistance torques generated by the 

centrifugal and Coriolis forces of the mass elements whose equation is as follows: 
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where Tr is the total resistance torque acting around axis ox. Other components are as specified 

above. 

The total precession torque acting around axis oy is represented a sum of the precession torques 

generated by the common inertial forces and the change in the angular momentum of the sphere 

whose equation is as follows: 

 

xaminp JTTT ωωπ 



 +=+= 1
27
20 2                                                     (26)  

 

where Tp is the total precession torque acting around axis oy. Other components are as specified 

above. 

                                                                    

5. Working example       

 

     The sphere has a mass of 1.0 kg and a radius of 0.1 m at about the spin axis. The sphere is 

spinning at 3000 rpm. An external torque of 0.5 Nm acts on the sphere, which precesses with an 

angular velocity of 0.05 rpm. These are used to determine the value of the resistance and 

precession torques generated by the centrifugal, common inertial and Coriolis forces, as well as 

the change in the angular momentum of the spinning sphere (Fig. 1). Solving this problem is 

based on Eqs. (18) and (25).  Substituting the initial data into the aforementioned equations and 

transformation yield the following result:   
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where Tr and Tp are respectively the resistance and precession torques generated by the mass 

elements and center mass of the spinning sphere. 

 

6. Results and discussion  

Analysis of the physical principles behind the acting forces and motions in a gyroscopic devices 

enables a state for actual gyroscope effects that have more complex origin than represented by 

known publications. New studies of the gyroscopic properties have shown that gyroscope’s 

motions result from action of the internal torques produced by the inertial forces generated by the  

mass elements and center mass of the spinning rotor. The value of these torques depends on the 

form of the spinning rotor, which geometry can be different designs.  The internal torques are 

generated by the centrifugal, common inertial, and Coriolis forces of the mass element, as well as 

the change in the angular momentum. The mathematical models for internal torques acting on the 

spinning sphere are derived and represented in Table 1. 

  

Table 1. Equations of the internal torques acting in the spinning sphere.   

Type of the torque generated by Equation Percentage 

of action (%) 

Centrifugal forces 
xinct JTT ωωπ 2

27
20

==  44.67 

Inertial forces 44.67 

Coriolis forces 
xcr JT ωω

27
20

=  4.52 
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These torques proportionally depend on the mass moment of inertia and angular velocity of the 

spinning sphere as well as on the angular velocity of its precession. The inertial forces generated 

by the mass elements of the spinning sphere are active physical components as the change in the 

angular momentum. The later one does not play the first role in gyroscope physics. The torques 

generated by centrifugal and common inertial forces are represented by one equation. However, 

the action of these torques applied to different axes of the spinning sphere that are perpendicular 

to the other. The torque generated by the centrifugal and Coriolis forces represents the resistance 

torques. The torques generated by the common inertial forces and the change in the angular 

momentum represents the precession torque. All torques are acting at one time and 

interdependently around two axes in a spinning sphere and manifest the gyroscope properties. 

New mathematical models enable descriptions for all gyroscope properties and are useful for 

modeling their behavior of the spinning sphere.  

 

7. Conclusion 

    In classical mechanics, the gyroscope theory is one of the most complex and intricate in terms 

of analytical solutions. Known mathematical models for the theory are based on action of the load 

torque and the change in the angular momentum. Such models have so far failed to adequately 

address the numerous practical problems. In contrast, the new mathematical models for the 

Change in an angular momentum xam JT ωω=  6.11 

Total 100 

 Resistance torque Tr = Tct + Tcr 
xr JT ωωπ )1(

27
20 2 +=  49.18 

Precession torque Tp = Tin + Tam 
xp JT ωωπ 






 += 1

27
20 2  49.82 

Total 100 
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gyroscope’s torques consider interdependent action at one time of several inertial forces of the 

rotating mass elements and center mass of the spinning rotor. The origin of these forces is well-

known in classical mechanics. These models are based on their combined action, which would 

manifest the gyroscope’s resistance and precession torques acting along different axes. The new 

analytical approach is thus distinguishable from those in known publications that tend to have 

complex numerical modelling. The new mathematical models for the spinning sphere torques 

renders it possible to solve enduring problems relating to gyroscopic devices and clearly 

demonstrates the physical principles behind the acting forces and motions. In that vein, this is also 

a good example of the educational processes. The new analytical approach clearly describes 

gyroscope properties in a new light while setting forth new challenges for future studies of the 

gyroscope theory. 

 

Notation  

fct,  f cr., fin.  – centrifugal, Coriolis and inertial forces, respectively, generated by mass elements of a 

spinning sphere 

J – mass moment of inertia of a  sphere 

M – mass of a sphere  

m – mass element of a sphere 

R – external radius of a sphere  

T – load external torque  

Tct, Tcr., Tin. Tam  –  torque generated by centrifugal, Coriolis and inertial forces and a change in the 

angular momentum, respectively  

t – time 

yc, ym – centroid and distance of location of mass element along axis 

Δα, α  – increment angle and angle of the turn for a sphere around own axis, respectively  

β  - angle of location the mass element of  a sphere at the plane zoy  
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Δδ – spherical angle of the sphere’s a mass element 

Δγ – angle of inclination of a sphere’s plane  

ω – angular velocity of a sphere 

ωx, ωy  – angular velocity of precession around axes ox and oy, respectively 
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